Introducción a los biorreactores: Un análisis cienciométrico
DOI:
https://doi.org/10.18041/2619-4465/interfaces.1.13393Palabras clave:
Biorreactores, Parámetros operativos, Diseño, Optimización, BiotecnologíaResumen
Los biorreactores juegan un papel crucial en la producción biotecnológica al influir directamente en la regulación metabólica de los procesos fermentativos. La optimización de parámetros como el pH y la transferencia de oxígeno permite mejorar la eficiencia y el rendimiento de los bioprocesos, lo que resalta la importancia de desarrollar una planificación avanzada en el diseño y la operación de los biorreactores para optimizar la síntesis de productos. A lo largo del tiempo, la innovación en el campo de los biorreactores ha sido ampliamente explorada, sin embargo, no se ha realizado una revisión cronológica exhaustiva. Este artículo busca abordar esa brecha a través de un análisis de la evolución de las tecnologías enfocadas en biorreactores, utilizando el marco del árbol de la ciencia. Con este fin, el estudio se basa en búsquedas sistemáticas en las bases de datos Web of Science y Scopus, accedidas a través de las bibliotecas universitarias. Estos hallazgos proporcionan una base para que nuevos investigadores y desarrolladores diseñen sistemas de alto rendimiento con un impacto práctico y significativo, respaldado por información precisa y actualizada.
Descargas
Referencias
[1]P. Çalik, E. Bilir, G. Çalik, and T. H. Özdamar, “Bioreactor operation parameters as tools for metabolic regulations in fermentation processes: influence of pH conditions,” Chem. Eng. Sci., vol. 58, no. 3–6, pp. 759–766, Feb. 2003.
[2]F. Oliveira, J. M. Salgado, N. Pérez-Rodríguez, J. M. Domínguez, A. Venâncio, and I. Belo, “Lipase production by solid-state fermentation of olive pomace in tray-type and pressurized bioreactors,” J. Chem. Technol. Biotechnol., vol. 93, no. 5, pp. 1312–1319, May 2018.
[3]P. Richard and S. Hilditch, “D-galacturonic acid catabolism in microorganisms and its biotechnological relevance,” Appl Microbiol Biotechnol, vol. 82, no. 4, pp. 597–604, Mar. 2009.
[4]A. Durand, D. de la Broise, and H. Blachère, “Laboratory scale bioreactor for solid state processes,” J. Biotechnol., vol. 8, no. 1, pp. 59–66, May 1988.
[5]J. Teixeira Freire, A. Maria da Silveira, and M. do Carmo Ferreira, Eds., Transport Phenomena In Particulate Systems. BENTHAM SCIENCE PUBLISHERS, 2012.
[6]Q. Carboué, C. Rébufa, N. Dupuy, S. Roussos, and I. Bombarda, “Solid state fermentation pilot-scaled plug flow bioreactor, using partial least square regression to predict the residence time in a semicontinuous process,” Biochem. Eng. J., vol. 149, no. 107248, p. 107248, Sep. 2019.
[7]J. Pandey, S. Majumdarr, R. Farooq, S. Gupta, and P. Bose, “Knowledge sharing in the era of Covid-19: a bibliometric analysis using scopus and web-of-science (WoS),” Glob. Knowl. Mem. Commun., Oct. 2023, doi: 10.1108/gkmc-02-2023-0051. Available: https://www.emerald.com/insight/content/doi/10.1108/GKMC-02-2023-0051/full/html
[8]T. Robinson and P. Nigam, “Bioreactor design for protein enrichment of agricultural residues by solid state fermentation,” Biochem. Eng. J., vol. 13, no. 2–3, pp. 197–203, Mar. 2003.
[9]X. Xiao, Z. Shan, T. Pan, Z. Huang, and W. Ruan, “Characteristics of volatile fatty acids production and microbial succession under acid fermentation via anaerobic membrane bioreactor treating kitchen waste slurry,” Bioresour Technol, vol. 429, p. 132502, Aug. 2025.
[10]A. F. Camargo et al., “Trichoderma koningiopsis fermentation in airlift bioreactor for bioherbicide production,” Bioprocess Biosyst Eng, vol. 47, no. 5, pp. 651–663, May 2024.
[11]A. P. Mathews, “Discussion of ‘Recovery of high-quality calcium phosphate fertilizer products from anaerobic fermentation bioreactor treated swine wastewater’, published by Kannan et al. (2023),” Chem. Eng. J., vol. 496, no. 153989, p. 153989, Sep. 2024.
[12]P. Singh, U. Kiran, and S. Ghosh, “Repeated batch fermentation of xylose-rich hydrolysate obtained from wheat straw in a bioreactor to produce second-generation bioethanol,” Fuel (Lond.), vol. 387, no. 134383, p. 134383, May 2025.
[13]A. Erbas, T. Allman, and F. Baganz, “Bacterial growth modeling for rapid fermentation process development using a parallel mini-bioreactor system,” N. Biotechnol., vol. 31, p. S124, Jul. 2014.
[14]P. Safaeian, F. Yazdian, K. Khosravi-Darani, H. Rashedi, and M. Lackner, “P3HB from CH using methanotrophs: aspects of bioreactor, fermentation process and modelling for cost-effective biopolymer production,” Front Bioeng Biotechnol, vol. 11, p. 1137749, Jun. 2023.
[15]D. A. Mitchell, L. O. Pitol, A. Biz, A. T. J. Finkler, L. F. de Lima Luz Jr, and N. Krieger, “Design and Operation of a Pilot-Scale Packed-Bed Bioreactor for the Production of Enzymes by Solid-State Fermentation,” Adv Biochem Eng Biotechnol, vol. 169, pp. 27–50, 2019.
[16]C. Lu, J. Zhao, S.-T. Yang, and D. Wei, “Fed-batch fermentation for n-butanol production from cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas stripping,” Bioresour Technol, vol. 104, pp. 380–387, Jan. 2012.
[17]A. Tsirigka, A. Aggeli, E. Theodosiou, A. M. Makris, A. J. Karabelas, and S. I. Patsios, “Model-based study of Yarrowia lipolytica cultivation on crude glycerol under different fermentation modes: Development of a membrane bioreactor process,” Bioresour Technol, vol. 417, p. 131773, Feb. 2025.
[18]B. Akkoyunlu, S. Daly, E. Syron, and E. Casey, “Fermentation strategies for PHB production in a novel membrane bioreactor: Investigating batch and fed-batch operations,” Biochem. Eng. J., vol. 204, no. 109239, p. 109239, Apr. 2024.
[19]M. Moresi, “Design and operation of a multifunctional pilot-scale bioreactor for enhanced aerobic fermentation,” Fermentation, vol. 11, no. 2, p. 101, Feb. 2025.
[20]A. Barrios-Nolasco, C. O. Castillo-Araiza, S. Huerta-Ochoa, M. I. Reyes-Arreozola, J. J. Buenrostro-Figueroa, and L. A. Prado-Barragán, “Evaluating the performance of Yarrowia lipolytica 2.2ab in solid-State Fermentation under bench-scale conditions in a packed-tray bioreactor,” Fermentation, vol. 10, no. 7, p. 344, Jun. 2024.
[21]M. G. Hajaya and T. Shaqarin, “Multivariable advanced nonlinear controller for bioethanol production in a non-isothermal fermentation bioreactor,” Bioresour Technol, vol. 348, p. 126810, Mar. 2022.
[22]C. Yay, Z. O. Cinar, S. Donmez, T. B. Tumer, O. Guneser, and M. I. Hosoglu, “Optimizing bioreactor conditions for Spirulina fermentation by Lactobacillus helveticus and Kluyveromyces marxianus: Impact on chemical & bioactive properties,” Bioresour Technol, vol. 403, p. 130832, Jul. 2024.
[23]M. Matsumoto, “In situ Extractive Fermentation of Lactic Acid by Rhizopus oryzae in an Air-lift Bioreactor,” Chem. Biochem. Eng. Q., vol. 32, no. 2, pp. 275–280, Jul. 2018.
[24]Q. Chi, W. Zhang, Z. Fei, and J. Liang, “A two-level measurement-based dynamic optimization strategy for a bioreactor in penicillin fermentation process,” Chin. J. Chem. Eng., vol. 23, no. 1, pp. 112–120, Jan. 2015.
[25]D. A. Mitchell, A. Pandey, P. Sangsurasak, and N. Krieger, “Scale-up strategies for packed-bed bioreactors for solid-state fermentation,” Process Biochem., vol. 35, no. 1–2, pp. 167–178, Oct. 1999.
[26]X. Zhang, H. Zhang, C. Ye, M. Wei, and J. Du, “Effect of COD/N ratio on nitrogen removal and microbial communities of CANON process in membrane bioreactors,” Bioresour Technol, vol. 189, pp. 302–308, Aug. 2015.
[27]Z. Chen et al., “Performance and methane fermentation characteristics of a pilot scale anaerobic membrane bioreactor (AnMBR) for treating pharmaceutical wastewater containing m-cresol (MC) and iso-propyl alcohol (IPA),” Chemosphere, vol. 206, pp. 750–758, Sep. 2018.
[28]A. T. J. Finkler, L. F. de Lima Luz Jr, N. Krieger, D. A. Mitchell, and L. M. Jorge, “A model-based strategy for scaling-up traditional packed-bed bioreactors for solid-state fermentation based on measurement of O2 uptake rates,” Biochem. Eng. J., vol. 166, no. 107854, p. 107854, Feb. 2021.
[29]A. T. J. Finkler et al., “Estimation of heat and mass transfer coefficients in a pilot packed-bed solid-state fermentation bioreactor,” Chem. Eng. J., vol. 408, no. 127246, p. 127246, Mar. 2021.
[30]M. Mahmoodi, G. D. Najafpour, and M. Mohammadi, “Bioconversion of agroindustrial wastes to pectinases enzyme via solid state fermentation in trays and rotating drum bioreactors,” Biocatal. Agric. Biotechnol., vol. 21, no. 101280, p. 101280, Sep. 2019.
[31]A. Pandey, “Solid-state fermentation,” Biochem. Eng. J., vol. 13, no. 2–3, pp. 81–84, Mar. 2003.
[32]K. S. M. S. Raghavarao, T. V. Ranganathan, and N. G. Karanth, “Some engineering aspects of solid-state fermentation,” Biochem. Eng. J., vol. 13, no. 2–3, pp. 127–135, Mar. 2003.
[33]D. A. Mitchell, M. Berovič, O. F. von Meien, and L. F. L. Luz Jr, “Basics of heat and mass transfer in solid-state fermentation bioreactors,” in Solid-State Fermentation Bioreactors, Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 45–56.
[34]S. R. Couto and M. Á. Sanromán, “Application of solid-state fermentation to food industry—A review,” J. Food Eng., vol. 76, no. 3, pp. 291–302, Oct. 2006.
[35]F. P. Casciatori, A. Bück, J. C. Thoméo, and E. Tsotsas, “Two-phase and two-dimensional model describing heat and water transfer during solid-state fermentation within a packed-bed bioreactor,” Chem. Eng. J., vol. 287, pp. 103–116, Mar. 2016.
[36]L. O. Pitol et al., “Optimization studies to develop a low-cost medium for production of the lipases of Rhizopus microsporus by solid-state fermentation and scale-up of the process to a pilot packed-bed bioreactor,” Process Biochem., vol. 62, pp. 37–47, Nov. 2017.
[37]A. T. J. Finkler et al., “Intermittent agitation contributes to uniformity across the bed during pectinase production by Aspergillus niger grown in solid-state fermentation in a pilot-scale packed-bed bioreactor,” Biochem. Eng. J., vol. 121, pp. 1–12, May 2017.
[38]K. Doriya and D. S. Kumar, “Solid state fermentation of mixed substrate for l-asparaginase production using tray and in-house designed rotary bioreactor,” Biochem. Eng. J., vol. 138, pp. 188–196, Oct. 2018.
[39]G. A. Gómez-Ramos et al., “Bioreactor engineering for circular economy: Bioactive compound production in solid‐state fermentation—review,” Chem. Eng. Technol., vol. 48, no. 1, Jan. 2025, doi: 10.1002/ceat.202400289. Available: https://onlinelibrary.wiley.com/doi/10.1002/ceat.202400289
[40]M. Couder-García, L. A. Prado-Barragán, S. Huerta-Ochoa, and C. O. Castillo-Araiza, “Assessing the impact of transport phenomena on modeling and optimization of solid-state fermentation for the revalorization of Agro-industrial residues in a wall‐cooled packed‐bed bioreactor,” Chem. Eng. Res. Des., vol. 210, pp. 365–381, Oct. 2024.
[41]F. Qasim, S. Diercks-Horn, L.-M. Herlevi, and H. M. Fernandez-Lahore, “Production of a fungal aspartic protease via solid‐state fermentation using a rotating drum bioreactor,” J. Chem. Technol. Biotechnol., vol. 100, no. 1, pp. 273–285, Jan. 2025.
[42]M. S. Jafari and P. Hejazi, “Poly(3-hydroxybutyrate) production using supplemented corn-processing byproducts through Cupriavidus necator via solid-state fermentation: Cultivation on flask and bioreactor scale,” J Biotechnol, vol. 392, pp. 1–10, Sep. 2024.
[43]A. Sala, A. Artola, R. Barrena, and A. Sánchez, “Harnessing packed-bed bioreactors’ potential in solid-state fermentation: The case of Beauveria bassiana conidia production,” Fermentation, vol. 10, no. 9, p. 481, Sep. 2024.
[44]E. I. M. Reyes, M. A. B. González, J. O. C. Balcazar, and J. S. Velasco, “Controlled fermentation in artisanal bioreactors to produce specialty coffees,” Ciênc. Agrotecnologia, vol. 48, 2024, doi: 10.1590/1413-7054202448007524. Available: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1413-
70542024000100221&tlng=en
[45]L. E. Vanegas, L. A. Hurtado, K. L. Fuentes, M. A. Escobar, and T. R. Chaparro, “Wastewater treatment and energy generation for dark fermentation bioreactor: preliminary results,” Int. J. Environ. Sci. Technol. (Tehran), vol. 22, no. 10, pp. 8719–8730, Jun. 2025.
[46]A.-R. Fleitas García, J.-S. Guez, C. G. Dussap, P. Fontanille, and G. Christophe, “Effect of redox potential on biohydrogen production during dark fermentation of food wastes in bioreactor,” Int. J. Hydrogen Energy, Feb. 2025, doi: 10.1016/j.ijhydene.2025.02.089. Available: https://linkinghub.elsevier.com/retrieve/pii/S0360319925006548
[47]C. Ren et al., “Pilot composite tubular bioreactor for outdoor photo-fermentation hydrogen production: From batch to continuous operation,” Bioresour Technol, vol. 401, p. 130705, Jun. 2024.
[48]X. Xiao et al., “Volatile fatty acids production from kitchen waste slurry using anaerobic membrane bioreactor via alkaline fermentation with high salinity: Evaluation on process performance and microbial succession,” Bioresour Technol, vol. 399, p. 130576, May 2024.
[49]T. Hessler, S. T. L. Harrison, J. F. Banfield, and R. J. Huddy, “Harnessing Fermentation May Enhance the Performance of Biological Sulfate-Reducing Bioreactors,” Environ Sci Technol, vol. 58, no. 6, pp. 2830–2846, Feb. 2024.
[50]H. Jiang et al., “Bioethanol production from cassava fed-batch fermentation in pervaporation membrane bioreactor with permeate fractional condensation,” Sep. Purif. Technol., vol. 354, no. 128807, p. 128807, Feb. 2025.
[51]N. Qureshi, R. D. Ashby, N. N. Nichols, and R. Hector, “Novel technologies for butyric acid fermentation: Use of cellulosic biomass, rapid bioreactor, and efficient product recovery,” Fermentation, vol. 10, no. 3, p. 142, Mar. 2024.
[52]Y. Zhang et al., “Enhanced fermentation for rhamnolipid production in a membrane bioreactor with a new strain Pseudomonas aeruginosa BC1,” Ind. Eng. Chem. Res., Jul. 2023, doi: 10.1021/acs.iecr.3c01475. Available: https://pubs.acs.org/doi/10.1021/acs.iecr.3c01475
[53]A. E. Mansy, E. El-Desouky, H. El-Gendi, M. A. Abu-Saied, T. H. Taha, and R. A. Amer, “Cellulosic fiber waste feedstock for bioethanol production via bioreactor-dependent fermentation,” Fermentation, vol. 9, no. 2, p. 176, Feb. 2023.
[54]J. Liu, Z. Liu, and T. Guo, “Repeated-batch fermentation by immobilization of Clostridium beijerinckii NCIMB 8052 in a fibrous bed bioreactor for ABE (acetone-butanol-ethanol) production,” J. Renew. Sustain. Energy, vol. 10, no. 1, p. 013101, Jan. 2018.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Interfaces

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.