Potencial de los bacteriófagos como alternativa terapéutica a los antibióticos: Análisis Cienciométrico
DOI:
https://doi.org/10.18041/2619-4465/interfaces.1.13391Parole chiave:
Bacteriófago, Medicina, Terapia fágica, Cienciometría, Resistencia bacterianaAbstract
El presente artículo cienciométrico se basa en el análisis sobre la relevancia de los bacteriófagos como una alternativa terapéutica a los antibióticos, frente a la creciente resistencia de los agentes microbianos. Para este estudio se utilizaron dos bases de datos fundamentales: Scopus y Web of Science, ambas reconocidas por recopilar investigaciones actuales y de gran importancia. Estas bases de datos proporcionaron información efectiva sobre cómo han evolucionado los bacteriófagos, pasando de ser solo agentes infecciosos a convertirse en una alternativa terapéutica ante la resistencia bacteriana. Para filtrar la gran cantidad de artículos obtenidos inicialmente en estas bases de datos, se aplicó un preprocesamiento que permitió extraer las publicaciones más destacadas, consolidándolas en una hoja de Excel organizada. Los resultados analizados se centraron en el número total de publicaciones por año, los autores más citados, las instituciones de investigación más influyentes y los países con mayor producción académica. Este análisis permitió identificar las tendencias globales en la investigación sobre terapia fágica, subrayando su potencial para abordar uno de los desafíos más críticos de la medicina moderna: la multirresistencia bacteriana.
Downloads
Riferimenti bibliografici
[1]M. Palma and B. Qi, “Advancing Phage Therapy: A Comprehensive Review of the Safety, Efficacy, and Future Prospects for the Targeted Treatment of Bacterial Infections,” Infectious Disease Reports, vol. 16, no. 6, pp. 1127–1181, Nov. 2024, doi: 10.3390/idr16060092.
[2]M. Passerini, F. Petri, and G. A. Suh, “Phage Therapy for Cardiac Implantable Electronic Devices and Vascular Grafts: A Targeted Literature Review,” Pathogens, vol. 13, no. 5, May 2024, doi: 10.3390/pathogens13050424.
[3]J. Tsonos, D. Vandenheuvel, Y. Briers, H. De greve, J. Hernalsteens, and R. Lavigne, “Hurdles in bacteriophage therapy: Deconstructing the parameters,” Veterinary Microbiology, vol. 171, no. 3–4, pp. 460–469, Jul. 2014, doi: 10.1016/j.vetmic.2013.11.001.
[4]T. Faltus, “The Medicinal Phage—Regulatory Roadmap for Phage Therapy under EU Pharmaceutical Legislation,” Viruses, vol. 16, no. 3, p. 443, Mar. 2024, doi: 10.3390/v16030443.
[5]M. Koncz et al., “Website.” [Online]. Available: https://doi.org/10.1016/j.cell.2024.09.009
[6]F. Tristán, O. Jolien, R. Tiphaine, B. Cécile, M. Thomas, and M. Willem-Jan, “Website.” [Online]. Available: https://doi.org/10.1530/EOR-24-0042
[7]S. Valencia, M. Zuluaga, A. Franco, M. Osorio, and S. Betancour, “Systematic review and bibliometric analysis of the metabolome found in human breast milk from healthy and gestational diabetes mellitus mothers,” Nova, vol. 21, no. 41, Dec. 2023, doi: 10.22490/24629448.7545.
[8]J. G. Saurith Moreno, D. C. Blanco Galan, S. Mindiola Garizado, and J. F. Ruiz Muñoz, “Optimization of marketing strategies employing LLMs: A systematic review,” Lúmina, vol. 25, no. 2, p. E0058, Aug. 2024, doi: 10.30554/lumina.v25.n2.5147.2024.
[9]S. Maestre and A. Torrijos, “Vista de Sistemas agrivoltaicos: una contribución a la sostenibilidad.” Accessed: Jun. 07, 2025. [Online]. Available: https://revistas.unilibre.edu.co/index.php/interfaces/article/view/12713/12750
[10]A. Britto and M. Delcides, “Vista de Análisis cienciométrico de la relación entre inteligencia artificial eingeniería de datos: tendencias, colaboración y evolución.” Accessed: Jun. 07, 2025. [Online]. Available: https://revistas.unilibre.edu.co/index.php/interfaces/article/view/12714/12751
[11]A. S. Nilsson, “Phage therapy—constraints and possibilities,” Upsala Journal of Medical Sciences, vol. 119, no. 2, pp. 192–198, Mar. 2014, doi: 10.3109/03009734.2014.902878.
[12]E. M. Barbu, K. C. Cady, and B. Hubby, “Phage Therapy in the Era of Synthetic Biology,” Cold Spring Harb Perspect Biol, vol. 8, no. 10, Oct. 2016, doi: 10.1101/cshperspect.a023879.
[13]J.-P. Pirnay, “Phage Therapy in the Year 2035,” Front. Microbiol., vol. 11, p. 538375, Jun. 2020, doi: 10.3389/fmicb.2020.01171.
[14]A. Górski et al., “Phage Therapy in Prostatitis: Recent Prospects,” Front. Microbiol., vol. 9, p. 379263, Jun. 2018, doi: 10.3389/fmicb.2018.01434.
[15]T. S. Brady et al., “Bystander Phage Therapy: Inducing Host-Associated Bacteria to Produce Antimicrobial Toxins against the Pathogen Using Phages,” Antibiotics, vol. 7, no. 4, p. 105, Dec. 2018, doi: 10.3390/antibiotics7040105.
[16]V. Y. Ooi and T.-Y. Yeh, “Recent Advances and Mechanisms of Phage-Based Therapies in Cancer Treatment,” Int J Mol Sci, vol. 25, no. 18, Sep. 2024, doi: 10.3390/ijms25189938.
[17]D. M. Pacia, B. L. Brown, T. Minssen, and J. J. Darrow, “CRISPR-phage antibacterials to address the antibiotic resistance crisis: scientific, economic, and regulatory considerations,” J Law Biosci, vol. 11, no. 1, p. lsad030, Jan. 2024, doi: 10.1093/jlb/lsad030.
[18]M. G. Martinet, M. Thomas, J. Bojunga, M. W. Pletz, M. J. G. T. Vehreschild, and S. Würstle, “The landscape of biofilm models for phage therapy: mimicking biofilms in diabetic foot ulcers using 3D models,” Front Microbiol, vol. 16, p. 1553979, Feb. 2025, doi: 10.3389/fmicb.2025.1553979.
[19]F. Ferrara et al., “Targeted molecular-genetic imaging and ligand-directed therapy in aggressive variant prostate cancer,” Proc Natl Acad Sci U S A, vol. 113, no. 45, pp. 12786–12791, Nov. 2016, doi: 10.1073/pnas.1615400113.
[20]S. T. Abedon, “Information Phage Therapy Research Should Report,” Pharmaceuticals (Basel), vol. 10, no. 2, Apr. 2017, doi: 10.3390/ph10020043.
[21]M. H. Oh, J. H. Yu, I. Kim, and Y. S. Nam, “Genetically Programmed Clusters of Gold Nanoparticles for Cancer Cell-Targeted Photothermal Therapy,” Oct. 2015, doi: 10.1021/acsami.5b07029.
[22]J. Qu, J. Zou, J. Zhang, J. Qu, and H. Lu, “Phage therapy for extensively drug resistant infection: case report and evaluation of the distribution of phage and the impact on gut microbiome,” Front Med (Lausanne), vol. 11, p. 1432703, Dec. 2024, doi: 10.3389/fmed.2024.1432703.
[23]X. Zheng et al., “Antibacterial activity evaluation of a novel K3-specific phage against Acinetobacter baumannii and evidence for receptor-binding domain transfer across morphologies,” Virol Sin, vol. 39, no. 5, pp. 767–781, Oct. 2024, doi: 10.1016/j.virs.2024.08.002.
[24]A. Kapoor, S. B. Mudaliar, V. G. Bhat, I. Chakraborty, A. S. B. Prasad, and N. Mazumder, “Phage therapy: A novel approach against multidrug-resistant pathogens,” 3 Biotech, vol. 14, no. 10, pp. 1–20, Sep. 2024, doi: 10.1007/s13205-024-04101-8.
[25]D. Olawade et al., “Phage therapy: A targeted approach to overcoming antibiotic resistance,” Microbial Pathogenesis, vol. 197, p. 107088, Dec. 2024, doi: 10.1016/j.micpath.2024.107088.
[26]N. M. Hitchcock et al., “Current Clinical Landscape and Global Potential of Bacteriophage Therapy,” Viruses, vol. 15, no. 4, p. 1020, Apr. 2023, doi: 10.3390/v15041020.
[27]J. Monnerat et al., “Antibacterial effect of genetically-engineered bacteriophage ϕEf11/ϕFL1C(Δ36)PnisA on dentin infected with antibiotic-resistant Enterococcus faecalis,” Archives of Oral Biology, vol. 82, pp. 166–170, Oct. 2017, doi: 10.1016/j.archoralbio.2017.06.005.
[28]J. D. Jones et al., “How to: assess patient suitability for unlicensed phage therapy in the United Kingdom,” Clin Microbiol Infect, vol. 31, no. 1, pp. 57–61, Jan. 2025, doi: 10.1016/j.cmi.2024.07.022.
[29]H. J. Stacey, S. De Soir, and J. D. Jones, “The Safety and Efficacy of Phage Therapy: A Systematic Review of Clinical and Safety Trials,” Antibiotics (Basel), vol. 11, no. 10, Sep. 2022, doi: 10.3390/antibiotics11101340.
[30]A. Steele, H. J. Stacey, S. de Soir, and J. D. Jones, “The Safety and Efficacy of Phage Therapy for Superficial Bacterial Infections: A Systematic Review,” Antibiotics (Basel), vol. 9, no. 11, Oct. 2020, doi: 10.3390/antibiotics9110754.
[31]A. L. Clarke, S. De Soir, and J. D. Jones, “The Safety and Efficacy of Phage Therapy for Bone and Joint Infections: A Systematic Review,” Antibiotics (Basel), vol. 9, no. 11, Nov. 2020, doi: 10.3390/antibiotics9110795.
[32]E. J. Vainio, H. Anany, and P. Hyman, “Editorial: Beyond humans-Virus therapy for pathogens of animals and plants,” Front Microbiol, vol. 13, p. 1127901, 2022, doi: 10.3389/fmicb.2022.1127901.
[33]S. Mattila, P. Ruotsalainen, and M. Jalasvuori, “On-Demand Isolation of Bacteriophages Against Drug-Resistant Bacteria for Personalized Phage Therapy,” Front Microbiol, vol. 6, p. 1271, Nov. 2015, doi: 10.3389/fmicb.2015.01271.
[34]J. Doss, K. Culbertson, D. Hahn, J. Camacho, and N. Barekzi, “A Review of Phage Therapy against Bacterial Pathogens of Aquatic and Terrestrial Organisms,” Viruses, vol. 9, no. 3, Mar. 2017, doi: 10.3390/v9030050.
[35]C. Rohde et al., “Expert Opinion on Three Phage Therapy Related Topics: Bacterial Phage Resistance, Phage Training and Prophages in Bacterial Production Strains,” Viruses, vol. 10, no. 4, Apr. 2018, doi: 10.3390/v10040178.
[36]G. Zou et al., “Improving the safety and efficacy of phage therapy from the perspective of phage-mammal interactions,” FEMS Microbiol Rev, vol. 47, no. 4, p. fuad042, Jul. 2023, doi: 10.1093/femsre/fuad042.
[37]N. A. El-Wafai et al., “Evaluation of hematological and blood biochemical indices in cultured Nile tilapia (Oreochromis niloticus) as affected by using phage therapy against Pseudomonas aeruginosa,” Annals of Animal Science, vol. 24, no. 2, pp. 465–477, Apr. 2024, doi: 10.2478/aoas-2024-0005.
[38]J. E. Hirsch, “An index to quantify an individual’s scientific research output,” Aug. 2005, doi: 10.1073/pnas.0507655102.
[39]D. Katarzyna, D. Krystyna, and S. Abedon, “Phage Therapy: The Pharmacology of Antibacterial Viruses.” Accessed: Jun. 07, 2025. [Online]. Available: https://doi.org/10.21775/cimb.040.081
[40]S. T. Abedon, K. M. Danis-Wlodarczyk, and D. R. Alves, “Phage Therapy in the 21st Century: Is There Modern, Clinical Evidence of Phage-Mediated Efficacy?,” Pharmaceuticals, vol. 14, no. 11, p. 1157, Nov. 2021, doi: 10.3390/ph14111157.
[41]S. T. Abedon, K. M. Danis-Wlodarczyk, and D. J. Wozniak, “Phage Cocktail Development for Bacteriophage Therapy: Toward Improving Spectrum of Activity Breadth and Depth,” Pharmaceuticals, vol. 14, no. 10, p. 1019, Oct. 2021, doi: 10.3390/ph14101019.
Dowloads
Pubblicato
Fascicolo
Sezione
Licenza
Copyright (c) 2025 Interfaces

Questo volume è pubblicato con la licenza Creative Commons Attribuzione - Non commerciale - Condividi allo stesso modo 4.0 Internazionale.