Resistencia reversa en Candida spp. Una visión desde fármacos, derivados de plantas y transportadores de membrana
DOI:
https://doi.org/10.18041/2390-0512/biociencias.2.11542Palabras clave:
Resistencia reversa, transportadores ABC y MFS, transportadores de membrana, derivados de plantasResumen
Las enfermedades infecciosas mundiales, generadas por hongos filamentosos y levaduras, están volviéndose más frecuentes debido a que se adaptan a los fármacos existentes y utilizan diferentes mecanismos de resistencia. Las especies de Candida que afectan a los seres humanos son alrededor de quince, algunas más frecuentes que otras y con tasas de morbilidad y mortalidad elevadas. Uno de los mecanismos de resistencia más estudiados en Candida spp. es la bomba de eflujo de fármacos, en la que los transportadores ABC y MFS son los más investigados. Los transportadores ABC y MFS energizan el transporte de sustancias mediante ATP y gradiente de protones, respectivamente. Por lo tanto, el uso de compuestos químicos o derivados de plantas, como posibles revertidores de la resistencia, podría considerarse un objetivo de estudio en lugar de crear nuevos antifúngicos. La eficacia de los antifúngicos actuales puede aumentar mediante una combinación adecuada con sustancias naturales. En esta revisión, abordamos cuestiones como la clasificación de los fármacos antifúngicos, la resistencia a los fármacos antifúngicos, los mecanismos generales de resistencia antifúngica, los transportadores ABC y MFS, el uso de derivados de plantas para revertir los procesos de resistencia y la evaluación de laboratorio de los derivados de plantas como posibles revertidores.
Descargas
Referencias
Khan SU, Anjum SI, Ansari MJ, Khan MHU, Kamal S, Rahman K, et al. Antimicrobial potentials of medicinal plant's extract and their derived silver nanoparticles: A focus on honey bee pathogen. Saudi J Biol Sci. 2019;26(7):1815-34.
Namita P, Mukesh R. Medicinal plants used as antimicrobial agents: A review. Int Res J Pharm. 2012;3:31-40.
Song M, Wang X, Mao C, Yao W. The Discovery of a Potential Antimicrobial Agent: the Novel Compound Natural Medicinal Plant Fermentation Extracts against Candida albicans. IOP Conference Series: Materials Science and Engineering. 2018;301:012026.
CDC. Invasive Candidiasis Statistics https://www.cdc.gov/fungal/diseases/candidiasis/invasive/statistics.html2019 [Available from: https://www.cdc.gov/fungal/diseases/candidiasis/invasive/statistics.html.
Richardson MD, Cole DC. Special Issue "Fungal Burden in Different Countries". J Fungi (Basel). 2018;4(3).
Gamaletsou MN, Walsh TJ, Sipsas NV. Invasive Fungal Infections in Patients with Hematological Malignancies: Emergence of Resistant Pathogens and New Antifungal Therapies. Turk J Haematol. 2018;35(1):1-11.
Chen Y, Mallick J, Maqnas A, Sun Y, Choudhury BI, Cote P, et al. Chemogenomic Profiling of the Fungal Pathogen Candida albicans. Antimicrob Agents Chemother. 2018;62(2).
Scorzoni L, de Paula ESAC, Marcos CM, Assato PA, de Melo WC, de Oliveira HC, et al. Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis. Front Microbiol. 2017;8:36.
Lee Y, Robbins N, Cowen LE. Molecular mechanisms governing antifungal drug resistance. npj Antimicrobials and Resistance. 2023;1(1):5.
Schuetzer-Muehlbauer M, Willinger B, Egner R, Ecker G, Kuchler K. Reversal of antifungal resistance mediated by ABC efflux pumps from Candida albicans functionally expressed in yeast. Int J Antimicrob Agents. 2003;22(3):291-300.
Liu X, Li T, Wang D, Yang Y, Sun W, Liu J, et al. Synergistic Antifungal Effect of Fluconazole Combined with Licofelone against Resistant Candida albicans. Front Microbiol. 2017;8:2101.
Sun S, Li Y, Guo Q, Shi C, Yu J, Ma L. In vitro interactions between tacrolimus and azoles against Candida albicans determined by different methods. Antimicrob Agents Chemother. 2008;52(2):409-17.
Bennett JE, Dismukes WE, Duma RJ, Medoff G, Sande MA, Gallis H, et al. A comparison of amphotericin B alone and combined with flucytosine in the treatment of cryptoccal meningitis. N Engl J Med. 1979;301(3):126-31.
Li Y, Chang W, Zhang M, Li X, Jiao Y, Lou H. Synergistic and drug-resistant reversing effects of diorcinol D combined with fluconazole against Candida albicans. FEMS Yeast Res. 2015;15(2).
Moraes DC, Ferreira-Pereira A. Insights on the anticandidal activity of non-antifungal drugs. Journal de Mycologie Médicale. 2019;29(3):253-9.
Maesaki S, Marichal P, Hossain MA, Sanglard D, Vanden Bossche H, Kohno S. Synergic effects of tactolimus and azole antifungal agents against azole-resistant Candida albican strains. J Antimicrob Chemother. 1998;42(6):747-53.
Egner R, Bauer BE, Kuchler K. The transmembrane domain 10 of the yeast Pdr5p ABC antifungal efflux pump determines both substrate specificity and inhibitor susceptibility. Mol Microbiol. 2000;35(5):1255-63.
Li H, Chen Z, Zhang C, Gao Y, Zhang X, Sun S. Resistance reversal induced by a combination of fluconazole and tacrolimus (FK506) in Candida glabrata. J Med Microbiol. 2015;64(Pt 1):44-52.
Sharma M, Biswas D, Kotwal A, Thakuria B, Kakati B, Chauhan BS, et al. Ibuprofen-mediated reversal of fluconazole resistance in clinical isolates of Candida. J Clin Diagn Res. 2015;9(1):DC20-2.
Da Rocha Curvelo JA, Reis de Sa LF, Moraes DC, Soares RM, Ferreira-Pereira A. Histatin-5 induces the reversal of Pdr5p mediated fluconazole resistance in Saccharomyces cerevisae. J Mycol Med. 2018;28(1):137-42.
Xie F, Chang W, Zhang M, Li Y, Li W, Shi H, et al. Quinone derivatives isolated from the endolichenic fungus Phialocephala fortinii are Mdr1 modulators that combat azole resistance in Candida albicans. Scientific Reports. 2016;6:33687.
Eldesouky HE, Mayhoub A, Hazbun TR, Seleem MN. Reversal of Azole Resistance in Candida albicans by Sulfa Antibacterial Drugs. Antimicrob Agents Chemother. 2018;62(3).
Li X, Yu C, Huang X, Sun S. Synergistic Effects and Mechanisms of Budesonide in Combination with Fluconazole against Resistant Candida albicans. PLoS One. 2016;11(12):e0168936.
Lewis RE. Current concepts in antifungal pharmacology. Mayo Clin Proc. 2011;86(8):805-17.
Nett JE, Andes DR. Antifungal Agents: Spectrum of Activity, Pharmacology, and Clinical Indications. Infect Dis Clin North Am. 2016;30(1):51-83.
Campoy S, Adrio JL. Antifungals. Biochem Pharmacol. 2017;133:86-96.
Pfaller MA, Diekema DJ. Progress in antifungal susceptibility testing of Candida spp. by use of Clinical and Laboratory Standards Institute broth microdilution methods, 2010 to 2012. J Clin Microbiol. 2012;50(9):2846-56.
Sanglard D. Emerging Threats in Antifungal-Resistant Fungal Pathogens. Front Med (Lausanne). 2016;3:11.
Alcazar-Fuoli L, Mellado E. Current status of antifungal resistance and its impact on clinical practice. Br J Haematol. 2014;166(4):471-84.
Klein C, Kuchler K, Valachovic M. ABC proteins in yeast and fungal pathogens. Essays Biochem. 2011;50(1):101-19.
Neelabh SK. ABC and MFS Transporters: A reason for Antifungal drug resistance. Arch Biotechnol Biomed. 2018;2(2):001-7.
Gaur M, Choudhury D, Prasad R. Complete inventory of ABC proteins in human pathogenic yeast, Candida albicans. J Mol Microbiol Biotechnol. 2005;9(1):3-15.
Kumar A, Jha A. Chapter 5 - Multidrug Resistance and Transporters. In: Kumar A, Jha A, editors. Anticandidal Agents: Academic Press; 2017. p. 49-54.
Prasad R, Banerjee A, Khandelwal NK, Dhamgaye S. The ABCs of Candida albicans Multidrug Transporter Cdr1. Eukaryot Cell. 2015;14(12):1154-64.
Sanglard D, Ischer F, Monod M, Bille J. Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology. 1997;143 ( Pt 2):405-16.
Singh NK. ABC and MFS Transporters: A reason for Antifungal drug resistance. Archieves of Biotechnology and Biomedicine. 2018;2:1-7.
Cavalheiro M, Pais P, Galocha M, Teixeira MC. Host-Pathogen Interactions Mediated by MDR Transporters in Fungi: As Pleiotropic as it Gets! Genes (Basel). 2018;9(7).
K. Redhu A, Shah AH, Prasad R. MFS transporters of Candida species and their role in clinical drug resistance. FEMS Yeast Research. 2016;16(4).
Sa-Correia I, dos Santos SC, Teixeira MC, Cabrito TR, Mira NP. Drug:H+ antiporters in chemical stress response in yeast. Trends Microbiol. 2009;17(1):22-31.
Gaur M, Puri N, Manoharlal R, Rai V, Mukhopadhayay G, Choudhury D, et al. MFS transportome of the human pathogenic yeast Candida albicans. BMC Genomics. 2008;9:579.
Gbelska Y, Krijger JJ, Breunig KD. Evolution of gene families: the multidrug resistance transporter genes in five related yeast species. FEMS Yeast Res. 2006;6(3):345-55.
Vu BG, Moye-Rowley WS. Construction and Use of a Recyclable Marker To Examine the Role of Major Facilitator Superfamily Protein Members in Candida glabrata Drug Resistance Phenotypes. mSphere. 2018;3(2).
Elansary HO, Szopa A, Kubica P, Ekiert H, Ali HM, Elshikh MS, et al. Bioactivities of Traditional Medicinal Plants in Alexandria. Evid Based Complement Alternat Med. 2018;2018:1463579.
Louis H, Linus M, Ali I, Joseph I, Amos P, Magu T. Antimicrobial Activity of Stem, Leave and Root Plant Extract of Sclerocarya birrea and Sterculia setigera against Some Selected Microorganisms. World Scientific News. 2018;92(2):309-26
Minooeianhaghighi MH, Sepehrian L, Shokri H. Antifungal effects of Lavandula binaludensis and Cuminum cyminum essential oils against Candida albicans strains isolated from patients with recurrent vulvovaginal candidiasis. J Mycol Med. 2017;27(1):65-71.
Duarte MC, Figueira GM, Sartoratto A, Rehder VL, Delarmelina C. Anti-Candida activity of Brazilian medicinal plants. J Ethnopharmacol. 2005;97(2):305-11.
Zida A, Bamba S, Yacouba A, Ouedraogo-Traore R, Guiguemde RT. Anti-Candida albicans natural products, sources of new antifungal drugs: A review. J Mycol Med. 2017;27(1):1-19.
Gil F, Laiolo J, Bayona-Pacheco B, Cannon RD, Ferreira-Pereira A, Carpinella MC. Extracts from Argentinian native plants reverse fluconazole resistance in Candida species by inhibiting the efflux transporters Mdr1 and Cdr1. BMC Complementary Medicine and Therapies. 2022;22(1):264.
Kuruc M, Conkova E. [Synergistic effect of azole antimycotics (clotrimazole and fluconazole) and natural substances]. Ceska Slov Farm. 2017;66(4):164-7.
Sharifzadeh A, Khosravi AR, Shokri H, Shirzadi H. Potential effect of 2-isopropyl-5-methylphenol (thymol) alone and in combination with fluconazole against clinical isolates of Candida albicans, C. glabrata and C. krusei. J Mycol Med. 2018;28(2):294-9.
Machado GdRM, Pippi B, Dalla Lana DF, Amaral AP, Teixeira ML, Souza KC, et al. Reversal of fluconazole resistance induced by a synergistic effect with Acca sellowiana in Candida glabrata strains. Pharm Biol. 2016;54(11):2410-9.
Endo E, Costa G, Cortez D, Ueda-Nakamura T, Nakamura C, Filho B. Effect of plant extracts on planktonic growth and biofilm of Staphylococcus aureus and Candida albicans. International Journal of Current Microbiology and Applied Sciences. 2015;4:908-17.
Anand J, Rai N. Anticandidal synergistic activity of green tea catechins, antimycotics and copper sulphate as a mean of combinational drug therapy against candidiasis. J Mycol Med. 2017;27(1):33-45.
Cui CY, Liu J, Zheng HB, Jin XY, Zhao XY, Chang WQ, et al. Diversity-oriented synthesis of pyrazoles derivatives from flavones and isoflavones leads to the discovery of promising reversal agents of fluconazole resistance in Candida albicans. Bioorg Med Chem Lett. 2018;28(9):1545-9.
Lu M, Li T, Wan J, Li X, Yuan L, Sun S. Antifungal effects of phytocompounds on Candida species alone and in combination with fluconazole. Int J Antimicrob Agents. 2017;49(2):125-36.
Huang S, Cao YY, Dai BD, Sun XR, Zhu ZY, Cao YB, et al. In vitro synergism of fluconazole and baicalein against clinical isolates of Candida albicans resistant to fluconazole. Biol Pharm Bull. 2008;31(12):2234-6.
Sharma M, Manoharlal R, Shukla S, Puri N, Prasad T, Ambudkar SV, et al. Curcumin modulates efflux mediated by yeast ABC multidrug transporters and is synergistic with antifungals. Antimicrob Agents Chemother. 2009;53(8):3256-65.
Sun LM, Lv BB, Cheng AX, Wu XZ, Lou HX. The effect of plagiochin E alone and in combination with fluconazole on the ergosterol biosynthesis of Candida albicans. Biol Pharm Bull. 2009;32(1):36-40.
Tong Y, Zhang J, Sun N, Wang X-M, Wei Q, Zhang Y, et al. Berberine reverses multidrug resistance in Candida albicans by hijacking the drug efflux pump Mdr1p. Science Bulletin. 2021;66(18):1895-905.
Sánchez ME, Turina AdV, Garcı́a DA, Verónica Nolan M, Perillo MaA. Surface activity of thymol: implications for an eventual pharmacological activity. Colloids and Surfaces B: Biointerfaces. 2004;34(2):77-86.
GD RMM, Pippi B, Dalla Lana DF, Amaral AP, Teixeira ML, Souza KC, et al. Reversal of fluconazole resistance induced by a synergistic effect with Acca sellowiana in Candida glabrata strains. Pharm Biol. 2016;54(11):2410-9.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Biociencias

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
-
Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios<. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
-
NoComercial — No puede utilizar el material para una finalidad comercial.
-
CompartirIgual — Si remezcla, transforma o crea a partir del material, deberá difundir sus contribuciones bajo la misma licencia que el original.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.