Biomarcador de respuesta inmune en sepsis bacteriana y neuro sepsis

Autores/as

DOI:

https://doi.org/10.18041/2390-0512/biociencias.1.13139

Palabras clave:

sepsis, neuro sepsis, biomarcador, sensibilidad, especificidad

Resumen

Introducción: La sepsis bacteriana es una condición en la que los pacientes afectados pueden progresar a formas más graves, como la neuro sepsis, con incremento de la mortalidad, en el que es importante establecer formas de diagnóstico más oportunas y eficaces. El objetivo de este trabajo de investigación es establecer la asociación entre los niveles séricos del biomarcador CD14 soluble (sCD14) en la sepsis con etiología bacteriana Gram negativa, con y sin progreso, a neuro sepsis. Metodología: Se hizo un estudio analítico empleando una cohorte de 125 pacientes diagnosticados con sepsis, a través de la escala SOFA y qSOFA, con etiología bacteriana Gram negativa, a quienes se les midieron los niveles séricos del biomarcador sCD14 mediante inmunoanálisis ligado por enzima (ELISA). Resultados: El estudio concluye que las concentraciones séricas del sCD14 en los pacientes con neuro sepsis (n = 14) tienen una media ± DE: 48,73 ± 8,06 ng/mL; en tanto que para los sépticos sin progreso a neuro sepsis (n = 111), resultaron 17,33 ± 9,75 ng/Ml, obteniendo p < 0,0001. Conclusiones: La concentración sérica del biomarcador sCD14 se asocia con la sepsis bacteriana con etiología Gram negativa, el cual puede ser de utilidad en la caracterización temprana del progreso a neuro sepsis.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

1. Tanaka S, Couret D, Tran-Dinh A et al. High-density Lipoproteins During Sepsis: from Bench to Bedside. Crit Care. 2020;24(1):134. Published 2020 Apr 7. doi:10.1186/s13054-020-02860-3 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7140566/.

2. Pandolfi F, Guillemot D, Watier L, Brun-Buisson C. Trends in Bacterial Sepsis Incidence and Mortality in France between 2015 and 2019 Based on National Health Data System (Système National des données de Santé (SNDS)): A Retrospective Observational Study. BMJ Open. 2022;12(5): e058205. Published 2022 May 24. doi:10.1136/bmjopen-2021-058205 https://pubmed.ncbi.nlm.nih.gov/35613798/.

3. Maneta E, Aivalioti E, Tual-Chalot S et al. Endothelial Dysfunction and Immunothrombosis in Sepsis. Front Immunol. 2023; 14:1144229. Published 2023 Apr 4.doi:10.3389/fimmu.2023.1144229 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10110956/.

4. Zou L, He J, Gu L et al. Brain Innate Immune Response via miRNA-TLR7 Sensing in Polymicrobial Sepsis. Brain Behav Immun. 2022; 100:10-24. doi: 10.1016/j.bbi.2021.11.007 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8766937/.

5. Gao YL, Liu YC, Zhang X, Shou ST, Chai YF. Information on Regulatory T Cells in Sepsis-associated Encephalopathy. Frontiers in Neurology, 2022;13:830784. https://doi.org/10.3389/fneur.2022.830784 https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2022.830784/full.

6. Polcz VE, Barrios EL, Chapin B et al. Sex, Sepsis and The Brain: Defining The Role of Sexual Dimorphism on Neurocognitive Outcomes after Infection. Clin Sci (Lond). 2023;137(12): 963-978.doi:10.1042/CS20220555 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10285043/.

7. Moriyama N, Saito M, Ono Y, Yamashita K, Aoi T, Kotani J. Increased Interleukin-17-Producing γδT Cells in the Brain Exacerbate the Pathogenesis of Sepsis-Associated Encephalopathy and Sepsis-Induced Anxiety in Mice. J Clin Med. 2023;12(13):4309. Published 2023 Jun 27. doi:10.3390/jcm12134309 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10342653/.

8. Arora J, Mendelson AA, Fox-Robichaud A. Sepsis: Network Pathophysiology and Implications for Early Diagnosis. Am J Physiol Regul Integr Comp Physiol. 2023;324(5): R613-R624. doi:10.1152/ajpregu.00003.2023 https://pubmed.ncbi.nlm.nih.gov/36878489/.

9. Trzeciak A, Pietropaoli AP, Kim M. Biomarkers and Associated Immune Mechanisms for Early Detection and Therapeutic Management of Sepsis. Immune Netw. 2020;20(3): e23. Published 2020 Jun 22. doi:10.4110/in.2020.20. e23 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327151/.

10. Kuye I, Anand V, Klompas M, Chan C, Kadri SS, Rhee C. Prevalence and Clinical Characteristics of Patients with Sepsis Discharge Diagnosis Codes and Short Lengths of Stay in U.S. Hospitals. Crit Care Explor. 2021;3(3): e0373. Published 2021 Mar 16. doi:10.1097/CCE.0000000000000373 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7994044/.

11. Drăgoescu AN, Pădureanu V, Stănculescu AD et al. Presepsin as a Potential Prognostic Marker for Sepsis According to Actual Practice Guidelines. J Pers Med. 2020;11(1):2. Published 2020 Dec 22. doi:10.3390/jpm11010002 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7821919/.

12. Azim A. Presepsin: A Promising Biomarker for Sepsis. Indian J Crit Care Med. 2021;25(2):117-118. doi:10.5005/jp-journals-10071-23741 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7922456/.

13. Sheikh F, Douglas W, Catenacci V, Machon C, Fox-Robichaud AE. Social Determinants of Health Associated with the Development of Sepsis in Adults: A Scoping Review. Crit Care Explor. 2022;4(7):e0731. Published 2022 Jul 15. doi:10.1097/CCE.0000000000000731 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9937691/.

14. Rose N, Matthäus-Krämer C, Schwarzkopf D, Scherag A, Born S, Reinhart K, Fleischmann-Struzek C. Association between Sepsis Incidence and Regional Socioeconomic Deprivation and Health Care Capacity in Germany: An Ecological Study. BMC Public Health. 2021; 21(1): 1636. https://doi.org/10.1186/s12889-021-11629-4 https://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-021-11629-4.

15. Estenssoro E, Loudet CI, Edul VSK et al. Health Inequities in the Diagnosis and Outcome of Sepsis in Argentina: A Prospective Cohort Study. Crit Care. 2019;23(1):250. Published 2019 Jul 9. doi:10.1186/s13054-019-2522-6 https://pubmed.ncbi.nlm.nih.gov/31288865/.

16. Olson NC, Koh I, Reiner AP et al. Soluble CD14, Ischemic Stroke, and Coronary Heart Disease Risk in a Prospective Study: The REGARDS Cohort. J Am Heart Assoc. 2020;9(6):e014241. doi:10.1161/JAHA.119.014241 https://pubmed.ncbi.nlm.nih.gov/32157955/.

17. Velissaris D, Zareifopoulos N, Karamouzos V et al. Presepsin as a Diagnostic and Prognostic Biomarker in Sepsis. Cureus. 2021;13(5):e15019. Published 2021 May 13. doi:10.7759/cureus.15019 https://pubmed.ncbi.nlm.nih.gov/34150378/.

18. Hassan EA, Abdel Rehim AS, Ahmed AO, Abdullahtif H, Attia A. Clinical Value of Presepsin in Comparison to hsCRP as a Monitoring and Early Prognostic Marker for Sepsis in Critically Ill Patients. Medicina (Kaunas). 2019;55(2):36. Published 2019 Feb 2. doi:10.3390/medicina55020036 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6409617/.

19. Arakawa K, Saeki A, Ide R, Matsushita Y. Presepsin Cut-off Value for Diagnosis of Sepsis in Patients with Renal Dysfunction. PloS one. 2022; 17(9): e0273930. https://doi.org/10.1371/journal.pone.0273930 https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0273930.

20. Park J, Yoon JH, Ki HK, Ko JH, Moon HW. Performance of Presepsin and Procalcitonin Predicting Culture-proven Bacterial Infection and 28-day Mortality: A Cross Sectional Study. Front Med (Lausanne). 2022; 9:954114. Published 2022 Aug 22. doi:10.3389/fmed.2022.954114 https://pubmed.ncbi.nlm.nih.gov/36072944/.

Descargas

Publicado

2025-12-06

Número

Sección

ARTÍCULOS DE INVESTIGACIÓN CIENTÍFICA Y TECNOLÓGICA