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Abstract

In this paper a method to obtain a pairwise potential 
energy function from Computational Fluid 
Dynamic (CFD) simulation of  two-fixed spherical 
particles is presented. A pair potential function is 
very helpful to evaluate the particle hydrodynamic 
interactions in two-phase flow systems involving 
a large number of  particles. The hydrodynamic 
interactive forces play an important role in this 
type of  flows. Using the traditional dynamic 
particle simulations such as direct numerical 
simulations (DNS), Two-Fluid Model (TFM) and 
discrete element (DEM), the analysis of  a system 
of  N particles, a great amount of  computational 
work of  order O(N2)is required to evaluate all the 
pairwise particle interactions. The algorithm of  
the present paper only requires two-fixed spherical 
particles to find a pair potential that can be used 
in a stochastic method such as Monte Carlo 
(MC) or Molecular Dynamic Simulations (MDS), 
resulting in less computer time requirements, 
making it considerably more practical for large-
scale problems encountered in two-phase flow 
systems. Thus, when someone is only interested in 
an equilibrium configuration of  a large group of  
particles in two-phase flow system rather than their 
time-dependant particle properties, this approach 
could be a solution.
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Introduction

In this paper a methodology to obtain a pairwise 
potential energy function U(r) from numerical 
simulations of  two-fixed spherical particles at low 
particle Reynolds number is presented. The study 
of  physical phenomena by particle interactions 
is well established in a number of  fields and is 
becoming increasingly important in others. The 
most classical example is probably magnetic 
fluids, which are composed of  ferromagnetic 
particles, but much recent work has been done in 
particle fluid dynamics, and molecular dynamics, 
Greengard&Rokhlin (1997), Camp, P. J., (2006).

Greengard&Rokhlin (1997) stated that there are two 
major types of  simulation methods. i) Dynamical 
simulations, which follow the trajectories of  N 
particles over some time of  interest and require an 
amount of  work of  the order O(N2). This method 
is based on the Newton’s second law of  motion. 
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Once given the initial positions {xi} and velocities, 
the trajectory of  each particle is governed by

(1)
 

F∇−= i
i

i td
xd

m 2

2

for i = 1, …, N.

where mi is the mass of  the ith particle and the 
force is obtained from the gradient of  a potential 
function F; ii) Stochastic technique, i. e., Monte 
Carlo Simulations, when one is interested in an 
equilibrium configuration of  a group of  particles 
rather than their time-dependant properties. In this 
case, a potential function becomes a paramount 
objective to evaluate the particle final configuration, 
the potential function can be evaluated for a large 
number of  configurations as

(2) ∫−= rdrFrU )()(

where U(r) is the potential function, F(r) is the 
potential force.

This paper is restricted to the case where potential or 
force is defined as hydrodynamic force interaction 
for between two-fixed particles a low Reynolds 
number (Re = 15). More specifically, it is based 
on the numerical simulations obtained by Vargas 
(2008), where interactive forces are considered in 
the form,
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where Fi is the total interacting force, xb;2
2(1)F −  is the 

total drag force in the x-axis over the leading particle, 
xb;2

)2(1F − stands for the total drag force in the x-axis 
over the trailing particle, whilst yb;2

)2(1F −  and yb;2
)1(2F −  

represents the total force in the y-axis direction 
for the leading and trailing particle, respectively. 
The interaction force (Fi), can be positive if  Fi> 0 
(repulsion) or negative if  Fi< 0 (attraction).

2. The potential energy function

As mentioned before, one of  the most important 
parts in a stochastic method (MC) is the potential 
energy function. Thus, once a reliable potential 

function U(r) is obtained, simulations using a 
stochastic method are straightforward. After a 
series of  hydrodynamic interaction forces at low 
particle Reynolds number between two-fixed 
spherical particles as function of  angle (q) and 
separation distance (r) obtained by Vargas (2008) 
an analytic form of  the potential energy as function 
of  these two variables, U(r q) is proposed. 

A three-step procedure is used to obtain an analytic 
fit to the potential energy function. First, the 
hydrodynamic interaction forces are fitted applying 
a Legendre polynomial expansion; second, the fitted 
Legendre expansion coefficients are correlated 
using a superposition of  two Gaussian functions, 
and third the force field is integrated to obtain the 
pairwise potential function.

3. Force fitting

Particle interactions in two-phase flows at low 
particle Reynolds numbers are strongly affected 
by the hydrodynamic interaction force between 
particles, Kim, et ál. (1993), Folkersma, et ál. 
(2000), Vargas & Easson (2005) and Prahl, et 
ál. (2007). A as mentioned before a series of  
hydrodynamic interactive forces were obtained 
by Equation. 3, Vargas (2008). These data 
were expanded on the basis set of  Legendre 
polynomials as follows:

(4) ( ) ∑=
n

nni )x(P)r(C,rF q

Where Pn is the Legendre polynomial of  order n, 
x = cosq.

By symmetry only the even values of  n were used. 
Very good fits are obtained by including even 
Legendre polynomials terms up to n = 6. Table 1 
shows the Legendre polynomials used to correlate 
the hydrodynamic interactive forces, Weisstein, 
Eric W (2011). Table 2 shows the values of  the 
six expanded coefficients Cn(r) for dimensionless 
particle separation, Do, ranging from 1.1 up to 25 
for particle Reynolds number of  15 and particle 
diameter of  1 x 10-4 m.
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Table 1. First six even Legendre polynomials function.

N ( )x(r)PC nn , x = cosq
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2
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Table 2. Expanded coefficients.

Do
Co

1x1010
C2

1x 1010
C4

1x1010
C6

1x1010

1.10
1.25
1.50
1.75
2.00
2.25
2.50
3.00
4.00
5.00
6.00
8.00
12.00
15.00
20.00
25.00

65.20
66.45
57.97
29.22
12.82
3.45
-1.22
-6.11
-4.93
-7.57
-5.17
-6.40
-2.76
-2.71
-1.94
-1.37

-360.44
-357.15
-300.71
-235.79
-184.54
-152.44
-128.47
-95.85
-55.91
-43.30
-26.02
-20.34
-8.24
-5.93
-3.48
-2.55

3.61
-6.43
-29.58
-61.51
-74.69
-85.57
-85.90
-79.28
-69.31
-56.81
-47.00
-30.59
-22.85
-10.88
-7.24
-5.17

-16.72
-7.11
-16.63
-15.53
-24.31
-27.96
-39.91
-55.07
-64.29
-66.34
-63.47
-55.46
-42.24
-27.22
-22.30
-15.38

Once Cn(r) is obtained, hydrodynamic interactive 
forces from equation (4) are computed as function 
of  the particle separation distance (r) and the 
angle position (q), this data forces are compared 
with the hydrodynamic interactive forces obtained 
from numerical simulations. Figure 1 shows, the 
Legendre correlations obtained by equation (4), 
including terms up to n = 6. A very good correlation 
is observed between numerical simulation (○) and 
the analytic compute data (─). 

Figure 1. CFD data fit for from 1 < Do< 20 (○) 
and Legendre terms up to n = 6 (─).

The next step is to find an analytic correlation for 
the Legendre expansion coefficients, Cn(r) from 
table 2. The variation of  the Legendre coefficients 
as function of  the particle separation distance 
between the particles is found to be very well 
correlated by a superposition of  two Gaussian 
distribution in the form:
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Where r ( )podD=  is the separation distance 
between the two particles, dp stands for the 
particles diameter, g1, g2, h1 and h2 constants to be 
determined.

Table 3 shows the values for g1, g2, h1 and h2. These 
values are given in units of  910x1 − Newtons and 
the values for h1 and h2 are given in terms of  
particle diameters (dp = 1 x 10-4m).

Table 3. Values of  g1, g2, h1 and h2 for equation 5.

N g1
1 x 10-9

h1
1 x 10-4

g2
1 x 10-9

h2
1 x 10-4

0 7.78144 0.890645 -0.6684 15.3592

2 -24.5916 0.909302 -12.1709 3.92072

4 -8.50118 7.26746 9.18018 0.651117

6 -6.85526 16.6977 5.86892 1.78035
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A comparison of  the computed values of  g1, g2, h1 
and h2 using equation (5) with values from Table 3 
is shown in Figure 2, excellent correlation is found. 
The solid lines represent the values obtained by 
equation (5) and symbols represent the values from 
Table 3. The abscissa is on a log-linear scale in 
order to highlight de points at small distances. 

Where t is only a variable change equal to r.

Given the forces from equations (4) and (5), the 
coefficients Un(r) are obtained. Figure 6 shows the 
four Legendre polynomial expansion coefficients 
as functions of  the non-dimensional particle 
separation.

Figure 2. Fit correlations for Legendre expansion 
coefficients Cn(r).

4. The Pair potential

The final step is to find the pairwise potential 
energy function. Pairwise potential functions 
U(r) as mentioned before are commonly used to 
study many particle systems applying Monte Carlo 
method or Molecular Dynamics Simulations. If  the 
interactive force is considered conservative, the pair 
potential energy U(r) is straightforwardly obtained 
from equations (4) and (5) as an expansion of  
Legendre polynomials as following:
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Figure 6. Legendre polynomial 
expansion coefficients Un(r)

By using equations (6) and (7) the pair potential 
energy can be calculated as a function of  the particles’ 
separation at different angle positions. Figure 7 
shows the pair potential energy for several angles as 
function of  the particle separation distance. From 
Figure 7 is observed that the minimum potential 
energy ( Joules10x07.2U 11

min
−−= ) is found for q 

= 0o at the minimum separation distance, Do = 1.

Figure 7. Pair potential energy as function of  the 
separation distance.
Conclusions

A three-step approach was applied to obtained 
a pairwise potential energy function from 
hydrodynamic interactive forces of  CFD 
simulations from two-fixed spherical particles at 
low particle Reynolds number (Rep = 15). The 
angular part of  the hydrodynamic interactive 
forces was described by a series of  Legendre 
polynomials, very good fits are obtained by 
including Legendre polynomials even terms up to 
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n = 6. The radial dependence of  the potentials was 
fitted, Cn(r), by a superposition of  two Gaussian 
distributions. And the pairwise potential energy 
function, U(r) was obtained by integration of  the 
forces as an expansion of  Legendre polynomials as 

( )∑=
n

nn ècos(r)PU),r(U q . 
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